

Welcome to MyPyOpt’s documentation!

This project is a very minimal optimization tool in Python. The basis for this work was my own development in
an optimization course in grad school. The original implementation was in Fortran, but I converted it to Python,
cleaned it up drastically, added tests and CI, docs, etc., and here it is.

The easiest way to see it in action is to check out the demos folder in the repository. It has demonstrations that use
a simple Python function call as the simulation, and also one that pretends like it is calling EnergyPlus, both
then calibrating given specific decision variables and an objective to minimize.

Contents:

	Decision Variable Class Documentation

	Exceptions Class Documentation

	IO Class Documentation

	Objective Evaluation Result Class Documentation

	Optimization Project Structure Class Documentation

	Optimizer Base Class Documentation

	Optimizer (Heuristic Search) Class Documentation

	Return State Enumeration Class Documentation

	Search Return Type Class Documentation

Index and tables

	Index

	Module Index

	Search Page

Decision Variable Class Documentation

	
class mypyopt.decision_variable.DecisionVariable(variable_name: str, minimum: float = -10000, maximum: float = 10000, initial_value: float = 1, initial_step_size: float = 0.1, convergence_criterion: float = 0.001)

	Bases: object

A structure for defining a single dimension in the optimization parameter space

	
to_dictionary() → dict

	Converts the meaningful parts of this decision variable into a dictionary for project summary reports

	Returns

	Dictionary of decision variable information

Exceptions Class Documentation

	
exception mypyopt.exceptions.MyPyOptException

	Bases: Exception

Currently just a simple wrapper around the base Exception class for convenience.
It may evolve with additional capabilities eventually

IO Class Documentation

	
class mypyopt.input_output.InputOutputManager

	Bases: object

This class defines some input/output-related conveniences

	
static write_line(console: bool, full_output: Optional[TextIO], string: str)

	A static method in the class used for convenience when printing out information.

	Parameters

	
	console – A boolean for whether to report the string to standard output

	full_output – A file stream; if not None, it will be written to with the string

	string – The string to report; a newline is appended to the end if it doesn’t have one already

Objective Evaluation Result Class Documentation

	
class mypyopt.objective_evaluation.ObjectiveEvaluation(state: int, value: Any, message: str = '')

	Bases: object

This class defines the return type from an evaluation of the objective function.

The objective function is generally intended to be minimized by the optimizer search() function,
so it is often a sum of squares error between some known quantity and the current outputs

Optimization Project Structure Class Documentation

	
class mypyopt.project_structure.ProjectStructure(expansion: float = 1.2, contraction: float = 0.85, max_iterations: int = 2000, project_name: str = 'project_name', output_dir_path: Optional[Path] = None, verbose: bool = False)

	Bases: object

This class defines high level project-wide settings

Optimizer Base Class Documentation

	
class mypyopt.optimizer.Optimizer(project_settings: ProjectStructure, decision_variable_array: List[DecisionVariable], callback_f_of_x: Callable[[Dict[str, float]], Any], callback_objective: Callable[[Any], List[float]], input_output_worker: Optional[InputOutputManager] = None, callback_progress: Optional[Callable[[int, float], None]] = None, callback_completed: Optional[Callable[[SearchReturnType], None]] = None)

	Bases: object

This is a base class of an Optimizer to define the interface

	
abstract f_of_x(parameter_hash: Dict[str, float])

	This function calls the “f_of_x” callback function, getting outputs for the current parameter space;
then passes those outputs into the objective function callback as an array, which usually returns the sum-sq-err
between known values and current outputs.

	Parameters

	parameter_hash – A dictionary of parameters with keys as the variable names, and current variable values

	
abstract search() → SearchReturnType

	This is the main driver function for the optimization.
It walks the parameter space finding a minimum objective function.
Requirements: call callback_progress and callback_completed as needed
Call f(x) with a hash of parameter names and values

Optimizer (Heuristic Search) Class Documentation

	
class mypyopt.optimizer_heuristic_search.HeuristicSearch(project_settings: ProjectStructure, decision_variable_array: List[DecisionVariable], callback_f_of_x: Callable[[Dict[str, float]], Any], callback_objective: Callable[[Any], List[float]], input_output_worker: Optional[InputOutputManager] = None, callback_progress: Optional[Callable[[int, float], None]] = None, callback_completed: Optional[Callable[[SearchReturnType], None]] = None)

	Bases: Optimizer

This class implements a heuristic, multi-variable, search optimization technique.
The process is:

	Evaluate an objective value at the initial point \(j_0 = f\left(x_0\right)\)

	Loop over each decision variable, perturb it in the current direction, and evaluate a new objective value with
all other variables at their current position \(j_{i} = f\left(\tilde{x}\right)\)

	If the objective value reduced, which is the goal, move in the current direction and continue looping. If the
objective value increased, reverse directions and contract.

	Continue looping until all decision variables are converged between the current and prior iteration, or maximum
iterations is reached.

	
f_of_x(parameter_hash: Dict[str, float])

	This function calls the “f_of_x” callback function, getting outputs for the current parameter space;
then passes those outputs into the objective function callback as an array, which usually returns the sum-sq-err
between known values and current outputs.

	
search() → SearchReturnType

	This is the main driver function for the optimization.
It walks the parameter space finding a minimum objective function.

Return State Enumeration Class Documentation

	
class mypyopt.return_state_enum.ReturnStateEnum

	Bases: object

This class simply defines some constants for how functions return

	
InfeasibleDV = -1

	Search failed because the decision variable went out of the valid parameter space range

	
InfeasibleObj = -2

	Search failed because the objective function could not be calculated, probably a failed simulation call

	
InvalidInitialPoint = -4

	Search failed because the initial point was invalid

	
Successful = 0

	Search returned successfully

	
UnsuccessfulOther = -3

	Search failed for an unknown reason

	
UserAborted = -9

	Search was stopped because the user forced it to stop

	
static all_enums() → List[int]

	

	
static enum_to_string(enum)

	This static function converts an enumerated constant integer into a string representation

	Parameters

	enum – A constant as defined in this class

	Returns

	A string description of the constant

Search Return Type Class Documentation

	
class mypyopt.search_return_type.SearchReturnType(success, error_reason, values=None)

	Bases: object

This class defines a response structure for a given project search

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to MyPyOpt’s documentation!

 		
 Decision Variable Class Documentation

 		
 Exceptions Class Documentation

 		
 IO Class Documentation

 		
 Objective Evaluation Result Class Documentation

 		
 Optimization Project Structure Class Documentation

 		
 Optimizer Base Class Documentation

 		
 Optimizer (Heuristic Search) Class Documentation

 		
 Return State Enumeration Class Documentation

 		
 Search Return Type Class Documentation

_static/file.png

_static/minus.png

_static/plus.png

