
MyPyOpt
Release 0.1

Edwin Lee

Nov 22, 2022





CONTENTS

1 Decision Variable Class Documentation 3

2 Exceptions Class Documentation 5

3 IO Class Documentation 7

4 Objective Evaluation Result Class Documentation 9

5 Optimization Project Structure Class Documentation 11

6 Optimizer Base Class Documentation 13

7 Optimizer (Heuristic Search) Class Documentation 15

8 Return State Enumeration Class Documentation 17

9 Search Return Type Class Documentation 19

10 Index and tables 21

i



ii



MyPyOpt, Release 0.1

This project is a very minimal optimization tool in Python. The basis for this work was my own development in an
optimization course in grad school. The original implementation was in Fortran, but I converted it to Python, cleaned
it up drastically, added tests and CI, docs, etc., and here it is.

The easiest way to see it in action is to check out the demos folder in the repository. It has demonstrations that use
a simple Python function call as the simulation, and also one that pretends like it is calling EnergyPlus, both then
calibrating given specific decision variables and an objective to minimize.

Contents:

CONTENTS 1



MyPyOpt, Release 0.1

2 CONTENTS



CHAPTER

ONE

DECISION VARIABLE CLASS DOCUMENTATION

class mypyopt.decision_variable.DecisionVariable(variable_name: str, minimum: float = -10000,
maximum: float = 10000, initial_value: float = 1,
initial_step_size: float = 0.1, convergence_criterion:
float = 0.001)

Bases: object

A structure for defining a single dimension in the optimization parameter space

to_dictionary()→ dict
Converts the meaningful parts of this decision variable into a dictionary for project summary reports

Returns
Dictionary of decision variable information

3



MyPyOpt, Release 0.1

4 Chapter 1. Decision Variable Class Documentation



CHAPTER

TWO

EXCEPTIONS CLASS DOCUMENTATION

exception mypyopt.exceptions.MyPyOptException

Bases: Exception

Currently just a simple wrapper around the base Exception class for convenience. It may evolve with additional
capabilities eventually

5



MyPyOpt, Release 0.1

6 Chapter 2. Exceptions Class Documentation



CHAPTER

THREE

IO CLASS DOCUMENTATION

class mypyopt.input_output.InputOutputManager

Bases: object

This class defines some input/output-related conveniences

static write_line(console: bool, full_output: Optional[TextIO], string: str)
A static method in the class used for convenience when printing out information.

Parameters

• console – A boolean for whether to report the string to standard output

• full_output – A file stream; if not None, it will be written to with the string

• string – The string to report; a newline is appended to the end if it doesn’t have one
already

7



MyPyOpt, Release 0.1

8 Chapter 3. IO Class Documentation



CHAPTER

FOUR

OBJECTIVE EVALUATION RESULT CLASS DOCUMENTATION

class mypyopt.objective_evaluation.ObjectiveEvaluation(state: int, value: Any, message: str = '')
Bases: object

This class defines the return type from an evaluation of the objective function.

The objective function is generally intended to be minimized by the optimizer search() function, so it is often a
sum of squares error between some known quantity and the current outputs

9



MyPyOpt, Release 0.1

10 Chapter 4. Objective Evaluation Result Class Documentation



CHAPTER

FIVE

OPTIMIZATION PROJECT STRUCTURE CLASS DOCUMENTATION

class mypyopt.project_structure.ProjectStructure(expansion: float = 1.2, contraction: float = 0.85,
max_iterations: int = 2000, project_name: str =
'project_name', output_dir_path: Optional[Path] =
None, verbose: bool = False)

Bases: object

This class defines high level project-wide settings

11



MyPyOpt, Release 0.1

12 Chapter 5. Optimization Project Structure Class Documentation



CHAPTER

SIX

OPTIMIZER BASE CLASS DOCUMENTATION

class mypyopt.optimizer.Optimizer(project_settings: ProjectStructure, decision_variable_array:
List[DecisionVariable], callback_f_of_x: Callable[[Dict[str, float]],
Any], callback_objective: Callable[[Any], List[float]],
input_output_worker: Optional[InputOutputManager] = None,
callback_progress: Optional[Callable[[int, float], None]] = None,
callback_completed: Optional[Callable[[SearchReturnType], None]] =
None)

Bases: object

This is a base class of an Optimizer to define the interface

abstract f_of_x(parameter_hash: Dict[str, float])
This function calls the “f_of_x” callback function, getting outputs for the current parameter space; then
passes those outputs into the objective function callback as an array, which usually returns the sum-sq-err
between known values and current outputs.

Parameters
parameter_hash – A dictionary of parameters with keys as the variable names, and current
variable values

abstract search()→ SearchReturnType
This is the main driver function for the optimization. It walks the parameter space finding a minimum
objective function. Requirements: call callback_progress and callback_completed as needed Call f(x) with
a hash of parameter names and values

13



MyPyOpt, Release 0.1

14 Chapter 6. Optimizer Base Class Documentation



CHAPTER

SEVEN

OPTIMIZER (HEURISTIC SEARCH) CLASS DOCUMENTATION

class mypyopt.optimizer_heuristic_search.HeuristicSearch(project_settings: ProjectStructure,
decision_variable_array:
List[DecisionVariable], callback_f_of_x:
Callable[[Dict[str, float]], Any],
callback_objective: Callable[[Any],
List[float]], input_output_worker:
Optional[InputOutputManager] = None,
callback_progress:
Optional[Callable[[int, float], None]] =
None, callback_completed:
Optional[Callable[[SearchReturnType],
None]] = None)

Bases: Optimizer

This class implements a heuristic, multi-variable, search optimization technique. The process is:

1. Evaluate an objective value at the initial point 𝑗0 = 𝑓 (𝑥0)

2. Loop over each decision variable, perturb it in the current direction, and evaluate a new objective value
with all other variables at their current position 𝑗𝑖 = 𝑓 (�̃�)

3. If the objective value reduced, which is the goal, move in the current direction and continue looping. If the
objective value increased, reverse directions and contract.

4. Continue looping until all decision variables are converged between the current and prior iteration, or max-
imum iterations is reached.

f_of_x(parameter_hash: Dict[str, float])
This function calls the “f_of_x” callback function, getting outputs for the current parameter space; then
passes those outputs into the objective function callback as an array, which usually returns the sum-sq-err
between known values and current outputs.

search()→ SearchReturnType
This is the main driver function for the optimization. It walks the parameter space finding a minimum
objective function.

15



MyPyOpt, Release 0.1

16 Chapter 7. Optimizer (Heuristic Search) Class Documentation



CHAPTER

EIGHT

RETURN STATE ENUMERATION CLASS DOCUMENTATION

class mypyopt.return_state_enum.ReturnStateEnum

Bases: object

This class simply defines some constants for how functions return

InfeasibleDV = -1

Search failed because the decision variable went out of the valid parameter space range

InfeasibleObj = -2

Search failed because the objective function could not be calculated, probably a failed simulation call

InvalidInitialPoint = -4

Search failed because the initial point was invalid

Successful = 0

Search returned successfully

UnsuccessfulOther = -3

Search failed for an unknown reason

UserAborted = -9

Search was stopped because the user forced it to stop

static all_enums()→ List[int]

static enum_to_string(enum)
This static function converts an enumerated constant integer into a string representation

Parameters
enum – A constant as defined in this class

Returns
A string description of the constant

17



MyPyOpt, Release 0.1

18 Chapter 8. Return State Enumeration Class Documentation



CHAPTER

NINE

SEARCH RETURN TYPE CLASS DOCUMENTATION

class mypyopt.search_return_type.SearchReturnType(success, error_reason, values=None)
Bases: object

This class defines a response structure for a given project search

19



MyPyOpt, Release 0.1

20 Chapter 9. Search Return Type Class Documentation



CHAPTER

TEN

INDEX AND TABLES

• genindex

• modindex

• search

21


	Decision Variable Class Documentation
	Exceptions Class Documentation
	IO Class Documentation
	Objective Evaluation Result Class Documentation
	Optimization Project Structure Class Documentation
	Optimizer Base Class Documentation
	Optimizer (Heuristic Search) Class Documentation
	Return State Enumeration Class Documentation
	Search Return Type Class Documentation
	Index and tables

